

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIE	ENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS	
SESSION: JUNE 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Prof Dipti R Sahu	
MODERATOR:	Dr Habatwa V Mweene	

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [25]

- 1.1 The Newton cooling law says that the temperature T at a time t of a material placed in a surrounding medium kept at a constant temperature T_s satisfies $(\Delta T)' = -k(\Delta T)$ with $\Delta T(t) = T(t) T_s$, and k > 0, constant, characterizing the material thermal properties.
- 1.1.1 Find the solution of Newton's cooling law with initial data T (0) = T_0 (5)
- 1.1.2 A cup with water at 45°C is placed in a cooler held at 5°C. If after 2 minutes the water temperature is 25°C, when will the water temperature be 15°C? (5)
- 1.2 Verify that $(xy^2-1) dx + x^2y dy = 0$ is exact and hence solve it. (10)

1.3 Solve
$$\frac{dy}{dx} - y = e^{2x}$$
, $y(0) = 7$ (5)

Question 2 [25]

- 2.1 Solve the equation $y'' + y' 2y x^2 = 0$ (10)
- 2.2 The differential equation of motion of a simple pendulum is given as (15)

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{g}}{l} x = 0$$

where x is the dependent variable and t is the independent variable. Find the displacement of the pendulum as a function of time t.

Question 3 [25]

3.1 Find the values of x, y, z which satisfy the matrix equation (5)

$$\begin{bmatrix} x+3 & 2y+x \\ z-1 & 4a-6 \end{bmatrix} = \begin{bmatrix} 0 & -7 \\ 3 & 2a \end{bmatrix}$$

3.2 Find the inverse of the matrix (10)

$$A = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ -1 & -2 & -2 \end{bmatrix}$$

3. 2 Find the eigenvalues and eigenvectors of A, where (10)

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Question 4 [25]

4.1 Obtain the value of P₃ (x) using Rodrigues' formula (10)

$$P_{n}(x) = \frac{1}{(2'')n!} \frac{d^{n}}{dx^{n}} (x^{2} - 1)^{n}$$

4.2 Using the Laplace transform find the solution for the following equation (10)

$$(\frac{\partial}{\partial t} \mathbf{y}(t)) + \mathbf{y}(t) = e^t$$

with initial conditions y(0) = 1 and Dy(0) = 0

4.3 Given U=1; V=t, where $t \in (-1,1)$. Verify that U is orthogonal to V. (5)

......END.....